n-3 fatty acids reduce plasma 20-hydroxyeicosatetraenoic acid and blood pressure in patients with chronic kidney disease.
نویسندگان
چکیده
BACKGROUND Metabolism of arachidonic acid by cytochrome P450 ω-hydroxylase leads to the formation of 20-hydroxyeicosatetraenoic acid (20-HETE) that regulates vascular function, sodium homeostasis and blood pressure (BP). Supplementation with n-3 fatty acids is known to alter arachidonic acid metabolism and reduce the formation of the lipid peroxidation products F2-isoprostanes, but the effect of n-3 fatty acids on 20-HETE has not been studied. METHOD We previously reported a significant effect of n-3 fatty acids but not coenzyme Q10 (CoQ) to reduce BP in a double-blind, placebo-controlled intervention, wherein patients with chronic kidney disease (CKD) were randomized to n-3 fatty acids (4 g), CoQ (200 mg), both supplements or control (4 g olive oil), daily for 8 weeks. This study examined the effect of n-3 fatty acids on plasma and urinary 20-HETE in the same study, as well as plasma and urinary F2-isoprostanes, and relate these to changes in BP. RESULTS Seventy-four patients completed the 8-week intervention. n-3 fatty acids but not CoQ significantly reduced plasma 20-HETE (P = 0.001) and F2-isoprostanes (P < 0.001). In regression models adjusted for BP at baseline, postintervention plasma 20-HETE was a significant predictor of the fall in SBP (P < 0.0001) and DBP (P < 0.0001) after n-3 fatty acids. CONCLUSION This is the first report that n-3 fatty acid supplementation reduces plasma 20-HETE in humans and that this associates with reduced BP. These results provide a plausible mechanism for the reduction in BP observed in patients with CKD following n-3 fatty acid supplementation.
منابع مشابه
Effects of Ramadan fasting on plasma free fatty acids in patients with non-alcoholic fatty liver disease
Introduction: Nonalcoholic fatty liver disease (NAFLD) is a global disease which its prevalence is about 10-35%. Several factors are involved in the pathogenesis of the disease. The present study was conducted to evaluate the effect of fasting during Ramadan on plasma free fatty acids in patients with NAFLD.Methods: This cross-sectional study was performed during the month of Ramadan in June-Ju...
متن کاملComparison of Epicardial Adipose Tissue Fatty Acid Profile in Cardiovascular Disease Patients Diabetic and Non-Diabetic
ABSTRACT Background and Objective: The relationship between diabetes mellitus and increased risk of cardiovascular diseases has been demonstrated. The aim of this study was to determine the fatty acid profile of epicardial adipose tissue in diabetic and non-diabetic patients with cardiovascular disease. &nb...
متن کاملA randomized controlled trial of the effects of n-3 fatty acids on resolvins in chronic kidney disease.
BACKGROUND AND OBJECTIVE The high incidence of cardiovascular disease (CVD) in chronic kidney disease (CKD) is related partially to chronic inflammation. n-3 Fatty acids have been shown to have anti-inflammatory effects and to reduce the risk of CVD. Specialized Proresolving Lipid Mediators (SPMs) derived from the n-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) activ...
متن کاملA single nucleotide polymorphism in the CYP4F2 but not CYP4A11 gene is associated with increased 20-HETE excretion and blood pressure.
Arachidonic acid is a major fatty acid that can be metabolized by the cytochrome P450 enzyme to a number of bioactive eicosanoids. A major metabolite of this oxidation is 20-hydroxyeicosatetraenoic acid, which acts as a potent vasoconstrictor. However, in the kidney, its vasoconstrictor actions can be offset by its natriuretic properties. A guanine-to-adenine polymorphism in the CYP4F2 gene was...
متن کاملCompensatory mechanism for homeostatic blood pressure regulation in Ephx2 gene-disrupted mice.
Arachidonic acid-derived epoxides, epoxyeicosatrienoic acids, are important regulators of vascular homeostasis and inflammation, and therefore manipulation of their levels is a potentially useful pharmacological strategy. Soluble epoxide hydrolase converts epoxyeicosatrienoic acids to their corresponding diols, dihydroxyeicosatrienoic acids, modifying or eliminating the function of these oxylip...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of hypertension
دوره 33 9 شماره
صفحات -
تاریخ انتشار 2015